The mineral clouds on the extrasolar giant gas planets HD 209458b and HD 189733b

The giant gas planets HD 189733b and HD 209458b are the two most studied extrasolar planets today. Both have been observed by several research groups with varies telescopes including the Hubble and the Spitzer Space Telescopes, and the super-high-precision HARPS spectrograph mounted on the 3.6 m telescope in La Silla in Chile. These extensive observational programs have reviled details about the atmospheres of these planets, like for example the presence of CO and CH4 in HD 189733b and CO and H2O in HD 209458b. Observations have further established that both gas giants form clouds inside their atmospheres (e.g. Sing et al. 2016). Are these clouds similar to clouds on Earth? What are they made of? Why does HD 209458b seem to have more water vapour than HD 189733b? How different are clouds between the two planets?

We use results from 3D radiative-hydrodynamics simulations of the atmospheres of HD 189733b and HD 209458b to answer the above questions and to derive cloud characteristics. We apply the same ideas about cloud formation as described in our Drift-Phoenix post. First, condensation seeds form with a certain efficiency. Once they are present, many solid materials (e.g. MgSiO3[s], Fe[s], SiO[s], TiO2[s], [s] meaning solid phase) can condense on these numerous but small surfaces. As these cloud particles grow, they fall into the atmosphere (gravitational settling). These raining cloud particles will encounter changing ambient conditions because the gas temperature and the gas pressure increase inwards the atmosphere. On their way, the cloud particles change in size but also in composition.

We now probe the atmospheric cloud formation in HD 189733b and HD 209458b by calculating the cloud structure for the vertical atmosphere at different longitudes and latitudes shown on Fig. 1.

Figure1. Points in the atmosphere where cloud formation was probed

Figure 1. Points in the atmosphere where cloud formation was probed

We find that both planets have the smallest cloud particles near the top of the cloud and the largest cloud particles at the bottom of the cloud, which is far inside the atmosphere beyond observable heights. This can be seen from the black solid line in all the panels in Fig 2.

Figure 2 demonstrates the vertical cloud structures for the daysides of the giant gas planets HD 189733b (top) and HD 209458b (bottom). We show how the material composition changes with height for different latitudes (Φ=270°, 315°, 0°, 45°, 90°) along the equator. The material composition is visualized by the lines of different colours, representing one material each: TiO2[s] – solid dark blue, Al2O3[s] – solid blue, CaTiO2[s] – solid purple, Fe2O3[s] – dashed light green, Fe[s] – dotted green, SiO[s] – dashed brown, SiO2[s] – solid brown, MgO[s] – dashed dirty orange, MgSiO3[s] – dashed orange, Mg2SiO4[s] – solid orange. The contribution of the different materials to the volume of the cloud particles, Vs/Vtot, is shown in percentage. For example, VMg2SiO4/Vtot=0.3 means 30% of the cloud particle is made of Mg2SiO4.

Figure 2. Dayside cloud particle material composition (colour coded, left axis) and mean grain sizes (black, right axis) for both exoplanets. For colour codes refer to the original paper at Helling et al. 2016, fig. 7 , or to the text above

Figure 2. Dayside cloud particle material composition (colour coded, left axis) and mean grain sizes (black, right axis) for both exoplanets. For colour codes refer to the original paper at Helling et al. 2016, fig. 7, or to the text above

To the left in Fig. 2, where the gas pressure is low, is the upper part of the atmosphere and the cloud. Here, the cloud particles are small (10-2 μm) and made of a rich mix of materials indicated by many coloured lines appearing in the plots of Fig 2. Letting your eyes wonder more to the right shows that most of the lines disappear, because these materials evaporate (like Fe2O3[s], MgO[s]). Most of the cloud particles are now made of MgSiO3[s], Mg2SiO4[s], SiO2[s] and a bit of Fe[s]. When moving further inwards the atmosphere where the temperature increases beyond thermal stability of the silicate materials, a larger fraction of cloud particles will be made of Fe[s].

Inspecting Fig 2 a bit closer by comparing the results for HD 189733b and HD 209458b shows that the cloud particles at the inner rim of HD 189733b are more Fe[s] rich than for HD 209458b. The cloud particles in the upper atmospheric regions appear rather similar in material composition: they are made of silicates and oxides with only very small contribution form iron.

A major result of our work is that all cloud properties are interlinked and that it is extremely difficult to guess correct combinations of cloud particle-sizes and their material composition that will occur at a certain place inside the atmosphere of an extrasolar planet.

Why would HD 209458b show more water absorption than HD 189733b? Hence, why does HD 209458b seem to have more water vapour than HD 189733b according to observations? Water is the most abundant absorbing species in the gas phase and maybe one would not expect any differences between two relatively similar planets like HD 189733b and HD 209458b. However, our research shows that a considerably larger portion of the atmosphere of HD 209458b is affected by the cloud than for HD 189733b. The clouds in HD 209458b reach into regions of lower atmospheric pressure, hence lower gas densities, compared to HD 189733b. It should therefore be more difficult to observe water on HD 209458b than on HD 189733b. Therefore, the more a cloud layer extends into the low-density upper part of the atmosphere, the shallower the gas-absorption features will be in the observed spectrum (Fig. 3).

Figure 3. More water molecules accumulate above clouds at higher atmospheric pressure. Clouds on HD 209458b form lower in the atmosphere (right), therefore have more water molecules above them resulting in a deeper water absorption feature in the spectrum, than on HD 189733b (left)

Figure 3. More water molecules accumulate above clouds at higher atmospheric pressure. Clouds on HD 209458b form lower in the atmosphere (right), therefore have more water molecules above them resulting in a deeper water absorption feature in the spectrum, than on HD 189733b (left)

 

For more details check out the original paper on ADS:

 Ch. Helling, G. Lee, I. Dobbs-Dixon, et al. 2016, MNRAS, 460, 855

The LEAP Group can be found here:

http://leap2010.wp.st-andrews.ac.uk/

And finally, don’t forget to like us on Facebook:

https://www.facebook.com/leap2010

Advertisements

Cosmic Rays enhance Prebiotic Chemistry on Sunless Worlds

In the International Journal of Astrobiology, Camille Bilger, Christiane Helling and Paul Rimmer (2014) presented a proof-of-concept on the potential effect of cosmic rays in the upper atmospheres of exoplanets (atmospheric pressures between 0.000001 bar and 0.000000001 bar, where 1 bar is the pressure of Earth’s atmosphere at sea level). We model the cosmic ray transport through the atmosphere of a planet with elemental composition and surface gravity similar to (but not the same as) Jupiter, if Jupiter were much farther away from the sun. This model atmosphere was produced using the Drift-Phoenix code (an upcoming post will be available soon on the Drift-Phoenix code).

Cosmic rays are charged particles (electrons, protons, bare nuclei) hurled through our galaxy at relativistic speeds by supernovae. When they strike the upper atmosphere of a planet, found to change its chemistry.

Cosmic Ray air shower

Figure 1. Cosmic Ray air shower

The combination of ultraviolet light from a star and cosmic ray ionization involves a delicate interplay between physics and chemistry, and is a hard problem to solve. It is simpler to consider cosmic ray chemistry on planets without daylight. These planets are often gas giants far from their host star, or rogue planets without a host star at all. These gas giants, like Jupiter, have an atmosphere made up not of mostly oxygen and nitrogen, but of mostly hydrogen, with a significant amount of nacient atomic hydrogen.

This is therefore a reducing atmosphere, and provides an ideal environment for making molecules believed to be important for the origin of life. Cosmic rays would ionize the molecular hydrogen, and this would make the atmosphere even more reducing.

Artistic impression of cosmic rays entering Earth's atmosphere. (Credit: Asimmetrie/Infn via CERN).

Figure 2. Artistic impression of cosmic rays entering Earth’s atmosphere. (Credit: Asimmetrie/Infn via CERN).

A reducing atmosphere is the standard initial chemical environment used in “origin-of-life” experiments, such as the Urey-Miller experiment. In the Urey-Miller experiment, an ionizing source in the form of an electrical discharge is initiated in a molecular gas, and so long as the atmosphere is reducing, prebiotic molecules are formed, including the twenty common amino acids found in living systems. If a reducing atmosphere, such as one dominated by oxygen and nitrogen, is used, the experiment produces no organic compounds.

The ion-neutral reactions made possible by cosmic ray ionization allow more of the hydrogen to be liberated from its molecular form, and increases the rate of reducing reactions. These reactions are found to be responsible for much of the prebiotic chemistry. Specifically, cosmic rays help to make biologically important molecules such as ammonia and acetylene. How much do cosmic rays help? They increase the abundance of some of these species by 10x or 100x in some cases.

Figure 3. Volume fraction of various species as a function of the gas pressure, p [bar] for the model atmosphere of a free-floating giant gas planet. The results assuming chemical quenching of C2H2 and C2H4 at height at ∼10−3 (dashed), and the results with cosmic ray ionization (solid) are all presented in this plot. A thick black horizontal line indicates the pressure above which termolecular (??) reactions may dominate.

Figure 3. Volume fraction of various species as a function of the gas pressure, p [bar] for the model atmosphere of a free-floating giant gas planet. The results assuming chemical quenching of C2H2 and C2H4 at height at ∼10−3 (dashed), and the results with cosmic ray ionization (solid) are all presented in this plot. A thick black horizontal line indicates the pressure above which termolecular reactions may dominate. (Rimmer et al. 2014, Fig. 4.)

The third picture in this article is from our paper, showing how much various molecules are enhanced or reduced because of cosmic rays. Some of the molecules that are enhanced, like ammonia, are key ingredients in the formation of the amino acid Glycine. These ingredients often must overcome a reactive barrier in order to form the amino acid, and overcoming this barrier may be made possible by electrostatic activation of ammonia (see our previous post here).

An image of the HR8799 planetary system from the December 2010 press release.

Figure 4. An image of the HR8799 planetary system from the December 2010 press release. (Credit: NRC-HIA, C. Marois, and Keck Observatory)

Our work may be relevant for directly imaged exoplanets orbiting HR 8799. Since these planets are ten times farther from their host star than Jupiter is from the sun, they are forever shrouded in the dark of night. It will be good to see how a star would change the chemistry, but this is a difficult problem. In order to find out what a star does in the upper atmosphere, it will be necessary to consider how the starlight passes through the atmosphere, and how that will affect thetemperature. The temperature will change the chemistry, and the chemistry will in turn affect how the starlight passes through theatmosphere. Much work still needs to be done to solve the problem for planets closer to their sun.

For more details check out the original paper on arXiv:

P. B. Rimmer, Ch. Helling and C. Bilger 2014, IntJAstrobio, 13, 173

And don’t forget to like us on Facebook:

https://www.facebook.com/leap2010

Aurora Borealis – The play of colours over St Andrews

During the night of 27 February, 2014 a rare phenomenon took place on the sky of St Andrews. Around 10 pm the lucky ones saw the amazing red and green splendour of the Aurora.

IMGP3755

Red and green lights of the Aurora Borealis with the Castle of St Andrews in the front. (Credits go for Pasquale Galianni, astronomer of the University of St Andrews)

Red and green lights of the Aurora Borealis with the Castle of St Andrews in the front. (Credit: Pasquale Galianni)

Everyone heard of the bright, dancing, colourful lights of the Aurora Borealis. Some have seen it by their own eyes, others have seen breathtaking pictures of it. But what is the Aurora exactly?

The Northern Lights are natural light phenomena, which occur at high latitudes on both hemispheres of the Earth (called Aurora Borealis on the North and Aurora Australis on the South). It is the result of the collisions of charged particles coming from the Sun as solar wind and the upper part of a planet’s atmosphere.

In the upper corona of the Sun the velocity of the thermal motion of the particles become higher than the escape velocity. This results in a continuous material loss from the Sun in the form of solar wind. These charged particles (ions and electrons) hit the Earth’s magnetosphere and tie to it. The magnetosphere accelerates some of these particles towards the Earth’s surface. As they reach the upper atmosphere they collide with atoms and molecules releasing kinetic energy, which we is seen as the lights of the Aurorae. The more active the Sun (which means more solar wind) the more frequent the Aurorae.

The colour of the lights depends on the atom/molecule the energetic particle collides with. The most commonly seen type is the green Aurora. At mid altitudes (~ 100 km), where the concentration of oxygen atoms is fairly high, the collisions between atoms and ions/electrons releases energy at ~560 nm, which is in the green part of the spectrum. At the highest altitudes (up to ~300 km) the oxygen atoms emit around 630 nm (red part of the spectrum). Because of the lower concentration of the atoms in this part of the atmosphere, red Aurorae are seen very rarely and only when the Sun is around its activity maximum. The blue colour is the result of the collision with molecular nitrogen. This takes place at lower altitudes, where the amount of atomic oxygen is reduced.

Aurora Borealis seen from the Observatory of St Andrews. (Credit: Diana Juncher)

Aurora Borealis seen from the Observatory of St Andrews. (Credit: Diana Juncher)

The Aurora is not unique on Earth in the Solar System. Planets like Jupiter or Saturn, which have stronger magnetic fields than Earth exhibit even more spectacular light phenomena. Auroral light was observed on Uranus and Neptune as well.

The Northern Light we saw last Thursday was the result of a very energetic solar flare which was erupted on the 25 Feb (00:25 UTC). NASA’s Solar Dynamics Observatory (SDO) captured the gigantic flare in different wavelengths. The one seen below is a composite image of two wavelengths of extreme ultraviolet light (171 and 304 Angstroms). The flare is classified as X4.9 which means it is one of the most powerful types. As the Coronal Mass Ejection (CME) originated from this flare reached the Earth’s magnetosphere the beautiful dance of lights appeared on our sky.

Solar flare erupted on at 00:25 (UTC) 25 Feb as capured by the SDO. This image is the combination of two wavelengths of extreme ultraviolet light (171 and 304 Angstroms). (Credit: NASA/SDO)

Solar flare erupted on at 00:25 (UTC) 25 Feb as capured by the SDO. This image is the combination of two wavelengths of extreme ultraviolet light (171 and 304 Angstroms). (Credit: NASA/SDO)

And to finish with, here is a nice GIF made from some of Diana’s photos. Thanks to Inna Bozhinova for creating this short “movie” for us!

Aurora Borealis on the 27 Feb. (Credit: Diana Juncher, Inna Bozhinova)

Aurora Borealis on the 27 Feb. Click on the image to see it in a better quality. (Credit: Diana Juncher, Inna Bozhinova)

http://leap2010.wp.st-andrews.ac.uk/

leap-2010.eu

Electrostatic activation of prebiotic chemistry in substellar atmospheres

How do prebiotic molecules, necessary to the origin of life, form? What energies are needed for the formation of e.g. formaldehyde, ammonia or glycine? Do dust grains of exoplanetary atmospheres have a key role in these processes? These and similar questions were investigated by Dr. Craig Stark and his collaborators.

Dust is present all over the Universe, growing in a variety of diverse environments, for example in the atmospheres of gas giant exoplanets, where mineral dust clouds form, as earlier works of our group have demonstrated. In this atmospheric plasma the dust grains become charged and attract positive ions accelerated from the plasma. “The energy of the ions upon reaching the grain surface may be sufficient to overcome the activation energy of particular chemical reactions that would be unattainable via ion and neutral bombardment from classical, thermal excitation. As a result, prebiotic molecules or their precursors could be synthesized on the surface of dust grains that form clouds in exoplanetary atmospheres.”

Miller-Urey_experiment-en.svg

Figure 1. Miller-Urey experiment

The famous experiment of Stanley Miller and Harold Urey was one of the first to show how important electricity is in the synthesis of prebiotic molecules. (Fig. 1.) They showed that in a planetary atmosphere composed of H2, CH4, NH3 and H2O it is possible to form prebiotic amino acids and other biological molecules important for life if electrical discharge is present. However nowadays scientists believe that the atmospheric composition used in the above mentioned experiment does not correspond to the one existed on the young Earth, although a recent study showed that during volcano outbursts, where reduced gases and lightning processes are also present, it is possible to produce prebiotic molecules. As our paper says: “For atmospheres more representative of primitive Earth, no significant organic molecules are produced using electrical (sparking) discharges. However, the presence of hydroxy-acids in the famous Murchison meteorite indicate that the so-called Strecker amino-acid synthesizing mechanism (triggered by a Miller-Urey-type electrical discharge) may be responsible for the extraterrestrial synthesis of amino acids.”

Why may dust grains have a significant role in the occurrence of particular chemical reactions? Because in a plasma containing dust particles the absorption of different kind of species is electrostatically driven, which means that energies can easily exceed the activation energy required for the formation of prebiotic molecules.

“Consider a dusty plasma in the atmosphere of a substellar object such as a giant gas exoplanet. The dust particles will be negatively charged and as a result a plasma sheath (an electron depleted region) forms around the particle. As a consequence, the ionic flux at the grain surface increases as the plasma ions are attracted to and are accelerated towards the grain surface. Upon reaching the surface the ions have fallen through an electrostatic potential and have been energized. In comparison to the neutral case, the ionic flux is enhanced and the ionic energy amplified, increasing the probability that chemical reactions will occur and that reactions with higher activation energies are accessible. In this way, charged particle surfaces help catalyze chemical reactions otherwise inaccessible at such low-temperatures present in planetary atmospheres.”

In this paper we investigated the energization of ions as they are accelerated to the surface of a charged dust grain. We were mainly interested in the electrostatic activation of particular chemical reactions in the atmospheres of exoplanets.

Simulations were made using an example substellar atmosphere, which was created by the Drif-Phoenix atmosphere and cloud formation code. The atmosphere was defined by the following parameters: Surface gravity (log(g)) = 3.0; effective temperature (Teff) = 1500 K and solar metalicity ([M/H]=0.0).

Figure 2. was taken from the paper. As it says, the figure “shows the mean grain size  as a function of atmospheric pressure pgas. In the nucleation-dominated upper atmosphere (pgas ≈ 10-11 bar) seed particles form with a mean grain size <a> ≈ 10-7  cm. The dust particles gravitationally settle and grow as they fall, increasing in size. In the lower atmosphere (pgas ≈ 1 bar) the mean particle size is <a> ≈ 10-5 cm.”

Figure 2.  Mean grain particle size  as a function of gas pressure.

Figure 2. Mean grain particle size as a function of gas pressure (Stark et al. 2013)

As the electron temperature increases the local electrostatic field will rise as well which will result in that the ions accelerated by this field gain more energy. The more energy the ions gain the more likely to form molecules with higher activation energies.

We used the formation of glycine (NH2CH2COOH) to give an example “of the electrostatic activation of prebiotic chemistry on the surface of a charged dust grain.” The following chemical sequence shows the individual steps, which lead to the formation of glycine, with the formation energies (an indicator of the activation energy of the chemical reaction)

Screen Shot 2014-01-28 at 14.24.12

Figure 3. Synthesis of glycine

Figure 3. Synthesis of glycine

As our results show, “high in the atmosphere where pgas ≈ 10-15 bar, the ion temperature is ≈ 600 K and the resulting thermal energy of an ion is ≈ 0.08 eV, which is lower than the energies required to form the reaction products above. However when the electron temperature Te = 1 eV the ions are accelerated to Etot ≈ 7.8 eV which surpasses the required formation energies, increasing the likelihood that these reactions will occur. At lower atmospheric pressures where it is hotter, the thermal energy can reach ≈ 0.45 eV (≈ 5200 K) and there will exist a population of higher energy ions that, once neutralized on the surface, may be energetic enough to activate the required chemical reactions to form glycine.”

We showed in our paper that in atmospheric plasma where dust grains become negatively charged, ions can be accelerated to energies high enough to produce chemical reactions which would be inaccessible via classical thermal ion and neutral fluxes. As a consequence the creation of prebiotic molecules on grain surfaces may increase significantly.

The importance of this paper is that it “establishes the feasibility of the electrostatic activation of prebiotic chemistry. This idea can be developed to explicitly model the surface chemical kinetics, describing the incoming accelerated ions interacting with the grain surface. In this way, the effect of the plasma ionic species, the composition of the grain surface and the effect of the grain charge on the resulting surface chemical reactions can be quantified.”

For more details check out the original paper on arXiv:

C. R. Stark, Ch. Helling, D. A. Diver, and P. B. Rimmer 2013, IntJAstrobio 13, 165

Also look at the press release of the paper:

http://www.st-andrews.ac.uk/news/archive/2014/title,233471,en.php